Fuelling the cognitive engine
Imagine a cold morning, the car sounds rough when you turn the ignition and takes a while to start. Everything feels sluggish. The engine stutters into life. You give it some revs and slowly pull away, grinding up through the gears. As it warms up and you hit a clear stretch of road, working up through the gears, it finds it’s biting point and the vehicle gains momentum, giving a smooth ride and a relaxed sense of control. This might act as a useful analogy to how our brain’s capacity to manage attention and motivate action operates. Focusing and managing finite attentional resources requires an impetus and a ‘kickstart’ at times, and galvanising oneself into action can be a taxing process. The system (‘me’) feels lackadaisical, sluggish, lethargic. The brain requires metabolic energy, and our cognitive functions are naturally dependent on the underpinning machinery of neural wiring, biochemical ‘fuel’ and systems architecture (speak to Rene Descartes if disagree). Until the ‘hard problem of consciousness’ is solved and some clear definition of where brain ends and mind begins can be established, we must accept that cognition is metabolically derived and energy intensive. Therefore, as noted, energy must be expended to supply relevant brain regions and networks with impetus to generate cognition, to ‘invest’ attention, be that as it may to external stimulus cues from which information can be derived and plans formed. Or else to internal processes that formulate goals, monitor progress, and make decisions about how to act upon the information and plans available. As with any physical requirement to overcome inertia, the hard part is in the initial stage, but once in operandus and momentum, velocity, direction is achieved, the system may become more energy efficient and the ride smoother (to return to the above analogy). Whilst any real world context may likely generate friction in the form of obstacles, unexpected events, deviations from course, unaccommodating texture on the ‘surface’, sometimes the situation is amenable to optimal functioning. On this basis let me introduce the notion of ‘effortless attention’ into the proceedings. When circumstances allow, an effortless state could be said to be occurring. The system is in the right ‘gear, the road surface is smooth and friction co-efficient accommodating, momentum is sufficient, and the operator is in control. The right level of challenge motivates this skilled capacity to engage the whole apparatus in action. A high level of performance is likely occurring, high demands in a situation are being responded to effectively, but in fact a perceived drop in energy expenditure is experienced. Now whether this is reflected in terms of actual energy expenditure reducing is less clear and difficult to define in absolute objective physiological terms. But it is likely that the system is more efficient in this state at managing those energy resources. Given the human predisposition to respond and act according to psychological factors rather than innate sense of physiological functioning, it is an important observation that ‘optimal functioning’ should be tied up in a subjective sense of effort. We are very influenced by how we feel, as emotive beings sensitive to changes in our homeostasis, and motivated by awareness of apparent ‘energy state’. So with this in mind, there is something key to understand here regarding how the brain’s attentional resources are deployed to switch from an acute sense of effortfulness to one that is deemed ‘effort-less’. An initial ‘low energy’ or at least ‘standing start’ status shifts to a higher energy, aroused and active status that is not so much perceived as ‘effortless’ so much as reflecting an absence of the perception of any effort. A couple of key points to note in this will shed some light on the significance behind effortless attention or ‘optimal functioning’ (also referred to as ‘flow’ as a more populist term). One is the notion of ‘engagement’. The other is the concept of ‘self’. Firstly, it would seem that being engaged (perhaps ‘wholly’) is a pre-requisite for successful focusing of attentional resources on task, and ensuring that a smooth alignment of processes occurs in a goal oriented state. ‘Finding the right gear’ might be an appropriate analogy as mentioned earlier. Here the vehicle is functioning efficiently and operating in a zone that plays to it’s engine capacity – flat out on the motorway if that befits its specifications, or in a more fuel efficient context (family saloon?)! ‘Engagement’ is a bit of a catch-all term for being immersed/absorbed in a task. Here let us use it to refer to a state of affairs wherein attention is directed towards the task requirements, and perceptual processing selective to cues only relevant to task (undistracted by those irrelevant). But importantly also, there is an emotionally arousing component of the experience. By this I mean there is a stimulating aspect to what the task requires, i.e. matching interests, skills, competencies and challenge to the individual, and also being in accordance with the individual’s homeostatic equilibrium. This latter term refers to the biological imperative that underpins physiological signals about the organism’s internal bodily state relevant to the environment. All things being well and equal and as criteria for optimal functioning, the individual will not be too hot, cold, hungry, fatigued, in pain, and is in accord with the environment (both internal and external). As organisms dependent on our environment for sustenance we are finely tuned and sensitive to changes in sensory input. The brain is not just a thinking machine. It evolved if anything to allow adaptive movement with respect to an environment that can provide nutrition, and to allow greater perceptual differentiation of objects within that environment such that further sustenance can be achieved, so contributing to the evolutionary cycle. It also of course governs the biological systems within the body. Because of biological prioritisation, it follows that any threat to the homeostatic equilibrium will overrule management of cognitive resources out of urgent necessity to redress the balance. So brain functions required to process signals arising that inform of a pending, or occurrent change in state will be requisitioned from more abstract, or perhaps energy-demanding cognitive tasks that are not so critical for performance. The good news is that there appears to be a compensatory mechanism in place to ensure that any relatively critical tasks being performed by ‘standard cognition’ can still be kept online. We can take as given that cognition and general brain function are dependent on physiological resource. It follows that this resource can be managed in such a way as to ‘increase supply’ to areas of the brain where this cognitive functioning is ‘online’ in order to maintain performance (Hockey, 2011). There is nevertheless a cost to the system, and at some point when overly stressed and unable to ‘cope’ with deploying its limited resources towards balancing homeostasis AND facilitating cognitive performance, something will have to give. (And that will be cognitive performance as biological need overcomes ‘thinking’ per se.) Craig (2002) proposes an intriguing take on how emotions ‘arise’ as a function of cognitive processing of signals pertinent to homeostasis. This relates to an area of the brain known as the insula cortex, and ‘interoception’ of information about internal bodily state. This has bearing on the position being outlined here with respect to governance of attentional resources, cognitive functioning, and emotional engagement facilitating ‘optimal performance’. [Craig, Hockey and also further positions espoused with the psychological constructionist fraternity including Feldman-Barrett and Russell (2014) and Posner et al.’s (2005) ‘valence-arousal circumplex amongst others, coalesce in my thinking with respect to unpacking further the brain mechanisms involved in ‘flow’, ‘optimal functioning’, ‘effortless attention’ and so on.] Emotional processing plays a significant part in this model of ‘engagement’ and management of attentional networks. At the same time this entails a cognitive-physiological interdependency in which attentional resourcing is a function of internal brain connectivity (with ‘functional’ purpose), mitigation of biological needs with respect to balancing homeostasis (relative to environmental influences) and emotional responses/processing that comes into play in this complex system of factors. Perhaps the emotional component is a product of the fluent governance of attention in sync with nicely balanced homeostasis. Or perhaps it is an instigating factor in itself that arises as a function of ‘attuned’ status in homeostasis linked to efficient cognitive processing on-task. Nonetheless, ‘engagement’ requires an emotional valence that ‘locks’ the monitoring capacity of the organism onto the task at hand – if a large predator hoves into view whilst I am performing a maths task, one can be pretty assured I will become rather emotionally invested in dealing with this threat possibly to the detriment of performing the task. It has been proposed that different attentional ‘systems’ / ‘streams’ may differentiate in specialist capacity with respect to emotional attentional versus cognitive attentional processing (Viviani, 2013). Part two will delve into these ‘dorsal’ and ‘ventral’ streams and their contribution to the construction of ‘self’ and it’s bearing on this perceived effortless state that underpins an optimally functioning cognitive agent focused on task requirements whilst attuned to the environment. Ultimately, this has positive bearing on 'self' development and enhanced ability to achieve goals and emotional growth. Environments that support and promote adventurous activity potential can facilitate access to this effortless attention and 'flow' state. References: Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666. doi: 10.1038/nrn894 Feldman-Barret t and Russell, J.A. (2014).The Psychological Construction of Emotion ISBN 9781462516971 Hockey, G. R. J. (2011). A motivational control theory of cognitive fatigue. In P.L. Ackerman (Ed.), Cognitive fatigue: multidisciplinary perspectives on current research and future applications (pp. 167-188). Washington, DC: American Psychological Association Posner, J, Russell, J.A.,c and Peterson, B.S. (2005) The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev Psychopathol. 2005; 17(3): 715–734 Viviani, R (2013). Emotion regulation, attention to emotion, and the ventral attentional network Frontiers in human neuroscience. November 2013 | Volume 7 | Article 746 | 1
0 Comments
Virtual Reality is a useful concept for thinking about actual reality. Alongside perennial questions such as the hard problem of consciousness (connecting mind to body), or what came before or is outside of the universe, it is difficult to pin down without finding some analogy that ‘will do’ for the time being. But we can use the technology, and idea of ‘virtual’ reality to create reality, explore it’s uses, it’s boundaries, and it’s credibility. And by inference make some assumptions about what constitutes reality, what it may in itself be useful for. In short, how we can engineer reality for our own purposes. Particularly with respect to stimulating and directing behaviours to purposeful and profitable ends!
We live in a particularly innovative period of history where the digital age is upon us, the revolution has started, and we really are tuning in across the board, turning on to the benefits of connectivity and dropping out of physical reality at an alarming rate. So it is even more pertinent that we re-establish connection with nature, with the planet. For our own health and mental wellbeing sakes, as well of course for the sake of the ecosystem that threatens to be demolished by our own insatiable appetite for consumption and exploitation of natural resources. I sit firmly somewhere in the hinterland between early adopter and luddite. Which I appreciate sounds nearly meaningless. I suppose what I mean is I have an interest in how technology mediates our immersion in the world, and how our senses, and cognitive capacities also mediate our perception of that world. Yet I pine for an earlier golden age where technology did not milk the human race’s supply of attentional resources dry. And yes, no golden age ever really existed in a sociological sense. It is perchance myth. And all progress, technological and otherwise is good, yes?? So I like to take the stance that technological evolution, as somewhat inevitable thus is a positive thing to be embraced, and directed, lest it insidiously coral the masses into a herd like state of being. There are limitations of course to the technology of virtual reality, but as with Moore’s law of exponential return, it is improving and will improve yet further as it becomes more ubiquitous. But this is helpful with respect to the potential to understand how this mediating experience affects the perceptions and behaviours of the user. And with that a window into how the brain constructs the rules of it’s reality in order to generate meaningful actions resulting. The proof of the pudding is in the acting. As Jeremy Bailenson (2011) introduces in his (co-authored) book Infinite Reality’, the term virtual reality means so much more than just the donning of a set of weird goggles a la in an ‘80s David Cronenberg movie. In fact with respect to the earlier comment about mediation between the observer and the world via the senses and cognitive processes, it is helpful to think of ‘virtual’ as referring an interpretation or ‘representation’ of something else (‘the world’). In fact much current scientific debate revolves around whether ‘consensus reality’ in fact means anything objective at all – the world as a simulation in some advance computer programme (Donald Hoffman talks a lot on this subject with great authority - http://www.cogsci.uci.edu/~ddhoff/). In this sense of ‘virtual’ it helps to also acknowledge that the simplest form of ‘virtual reality’ resides in one’s own mind when thinking about stuff, imagining things that aren’t directly there in front of us, dreaming at night. Telling a story around a campfire elicits an empathic response with the audience,: a compelling narrative evokes emotional engagement, leading to various behaviours stimulated from a lack of any ‘real’ stimulus. (Making someone involuntarily shiver or gasp in response to a sinister tale, or having them wracked with mirth at a funny anecdote.) The point is, we are wired for suspension of belief. It is this very capacity to engage with, empathise with and react to, an idea, a concept, an evoked experience lodged in the mind of the beholder, that is the essence of how we embrace the ‘unreal’. Reality becomes something of a meaningless ideal in this sense, for it is the behavioural response evoked in a situation by an idea that is impressed upon the mind which drives action and motivation going forward. And this helps then understand how it is that actually it is the brain that ‘creates’ it’s reality in this sense. Everything is mediated effectively. The brain sits inside its cranial casing, a lightless, Platonic cave. The eyes are not windows to the outside world. Rather they feed optical fibrous lines of communication conveying electrochemical signals to the inner-computer. This in turn organises those signals to be transmitted via network ‘cables’ to autonomous ‘committees’ that ascribe some significance to what becomes ‘information’ that can be utilised in a grander context of meaning. The capacity to empathise with a concept or narrative espoused through a mediating technology such as VR lends itself to some potentially useful, even ground-breaking, applications. This is particularly so with respect to engendering greater empathy with the natural order of things and the wider environment. Whilst people will pay sincere lip-service to pro-environmental ideals and believe they are acting accordingly, there is a notable dissonance between word and deed. But this speaks to an issue with human motivation, and again rests with the brain’s proclivity to make it’s own life easy. For acting takes energy, and a great deal of that energy is required to overcome inertia. And anyway, ‘promising’ to do some pro-environmental action is as good as having done it, right? but without actually having to expend further energy to carry through…? The brain lays down it’s neural grooves as an efficient operating system that makes habitual patterns of behaviour the default. Like the stream that finds its own way downhill, it will seek the path of least resistance. To create a new groove means deviating the flow of the old. But emotional engagement can provide it’s own impetus. For emotional responses can shake up the homeostasis of the organism, releasing hormones and neurochemicals such as cortisol or dopmamine, stressing the system and rewarding it in a cocktail of re-balancing nourishment. Virtual reality can provide an experience that plays on the brain’s capacity to engage with an imagined world, to smooth out it’s edges and to become a complicit actor in it’s narrative. And in this respect, the brain is happy to incorporate the elements of this narrative into it’s own script of experience. The system that processes the sensory signals, organises this into meaningful information, finds purpose in laying down the grooves that make it such an efficient organ. The neurochemicals consolidate the resulting network (dopaminergic reward), and the system will look to use this revised network to prompt its decisions and actions. The point here is that using mediating technological experiences as can be devised with VR, can have utility in changing people’s behaviours and attitudes without the need for effort on their part. Because the user is presented with this ‘reality’ they only have to let go and allow their brains to do the work that is naturally enjoys. So an experience may involve transporting virtually into a far off place where they become part of that environment, perhaps engaging in an activity that has direct repurcussions on the natural surroundings. This experience will be imprinted in the cortices as being something that they themselves had agency over. Their actions in the virtual world will be motorically imprinted as ‘real’. Their memories will be encoded as having take place ‘for real’, and this will in future be drawn on for reference when making decisions in the ‘actual’ world. If that action experienced brought home a sense of consequence, of immediate cause and effect, of responsibility for this, then future action-decisions will draw on the weight of that responsibility to motivate perhaps more positive behaviours. Studies are emerging that draw on this facet of the usefulness of VR and ‘persuasive technologies’ to help change behaviours, particularly with respect to sustainability issues. VR can of course be used as a marketing tool, particularly to engage consumer interests in tourism and natural recreation possibilities. But more of interest to me is how analogously this concept of meditated experience can engender positive changes in attitude, motivation and ultimately behaviour. And how the learnings from ‘virtual reality’ transfer to how we approach thinking about (with the aid of the imagination) how we engage with the natural world directly (albeit enhanced by certain ways of thinking about it). I’ll talk elsewhere about how certain places can become elevated in their emotional and perceptual impact via the medium of photography and cinematography, with reference to virtual reality as well. In summary, reality is in itself a mediated experience (via our senses into our brain, informed by the processes therein). What is important in consolidating this ‘consensus’ of reality is the empathic response engendered by this mediated process. Consequently, the experience that results and is immersed within can stimulate further behaviour, motivation and perspective change. And this can in principle be achieved with little ‘mental effort’ using technology such as virtual reality, for the brain does not like having to invest energy in disrupting the ‘grooves’ it has laid down based on past experience. The challenge is to promote direct experience with the natural world such that behaviours are ecologically-sustaining, and the connection with the environment is empathically-inspiring! A paper which talks more about how virtual reality and persuasive communications more generally can inspire greater connection of self with nature is referenced below (Ahn et al., 2016). Footnote from Jäncke et al. (2009): "A “negative connectivity” between right-sided DLPFC activation and brain areas was found in the dorsal visual stream, extra-striate areas, the SPL and the IPL, and in the PMC (Figure 3). Based on this finding, we indicate that the right-sided DLPFC down-regulates the activation in the dorsal visual processing stream. Considering the specific role of the dorsal stream in egocentric processing of the visual environment, it can be proposed that the right DLPFC is recruited as part of a strategy for regulating the experience of presence by constraining the egocentric processing of the roller coaster stimulus display. It can also be proposed that by increasing the activation in the dorsal visual stream during strong presence experience (with diminished activation in the right-sided DLPFC), the brain attentively prepares actions in the virtual environment as if the brain actually responds to real-life situations. It is known that the dorsal visual stream and the connected parieto-frontal areas are strongly involved in action and movement control. Hence, the stronger the participants are involved in the virtual scene, the stronger they plan to act attentively in the virtual environment." References: Ahn, S.J.,Bostick, J, Ogle, E., Nowak, K.L., . McGillicuddy, K.T., and Bailenson, J.N. (2016). Experiencing Nature: Embodying Animals in Immersive Virtual Environments Increases Inclusion of Nature in Self and Involvement with Nature. Journal of Computer-Mediated Communication, Volume 21, Issue 6, 1 November 2016, Pages 399–419, https://doi.org/10.1111/jcc4.12173 Blascovich, Jim, and Jeremy Bailenson (2011), Infinite Reality: Avatars, Eternal Life, New Worlds, and the Dawn of the Virtual Revolution , Hammersmith: HarperCollins ebooks. Jäncke, L., Cheetham, M. and Baumgartner, T. (2009). Virtual reality and the role of the prefrontal cortex in adults and children. Frontiers in Neuroscience, Volume 3 | Issue 1 | |
The science of cognition and perception in contextThis is where I elaborate upon brain science relating to cognitive functioning dependent on environmental context. Archives
December 2019
Categories
All
|